Overview of Electrolyte Additives for Lithium-Ion Batteries

Authors

  • Yajing Guo College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Min-istry of Education, Hangzhou Normal University, Hangzhou 311121 Zhejiang, PR China Author

DOI:

https://doi.org/10.63313/MS.4002

Keywords:

Film - forming additive, High - voltage stabilizer, Conductivity - enhancing addi-tive, Flame - retardant additive, Overcharge - preventing additive

Abstract

This article comprehensively reviews the research progress and application prospects of lithium - ion battery electrolyte additives. These additives play a crucial role in improving battery energy density, cycle life, and safety through interfacial chemical regulation. Key additives consist of film - formers (e.g., VC, DFEC), high - voltage stabilizers (e.g., LiDFOB), conductivity enhancers (e.g., γ - cyclodextrin), flame retardants, and overcharge preventatives. They signifi-cantly enhance battery performance by forming stable CEI/SEI films, suppress-ing electrolyte decomposition, and optimizing lithium deposition kinetics.

References

[1] Ahuja, A., Kumar, A., Alam, K., Lohani, H., Sengupta, A., Kumari, P., . . . Mitra, S. (2024). En-hancing High‐Voltage LNMO Cathode Performance in Li‐Metal Batteries Via Anionic Electrolyte Additive‐Integrated CEI Engineering. Advanced Functional Materials, 35(10). https://doi.org/10.1002/adfm.202416634

[2] Dai, Z., Cao, S., Shi, W., Liu, B., Yin, G., & Chen, F. (2025). Artificial CEI construction via fluorosulfonates additive in high voltage lithium batteries to inhibit the transition metals dissolution. Journal of Electroanalytical Chemistry, 979. https://doi.org/10.1016/j.jelechem.2025.118934

[3] Haregewoin, A. M., Wotango, A. S., & Hwang, B. J. (2016). Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy Environ. Sci., 9(6), 1955-1988. https://doi.org/10.1039/C6EE00123H

[4] Ka, O., Cheng, F., Wen, L., Wang, X., Wang, T., Zeng, X., . . . Dai, L. (2024). Identifying lithium difluoro(oxalate)borate as a multifunctional electrolyte additive to enable high-voltage Li4Ti5O12 lithium-ion batteries. Journal of Materials Chemistry A, 12(19), 11487-11501. https://doi.org/10.1039/d4ta00750f

[5] Kubot, M., Balke, L., Scholz, J., Wiemers‐Meyer, S., Karst, U., Hayen, H., .Nowak, S. (2023). High‐Voltage Instability of Vinylene Carbonate (VC): Impact of Formed Poly‐VC on In-terphases and Toxicity. Advanced Science, 11(1). https://doi.org/10.1002/advs.202305282

[6] Lei, Y., Wang, K., Jiang, S., Xu, X., Zheng, J., Yin, J., & Gao, Y. (2024). Recent Progress on Mul-tifunctional Electrolyte Additives for High‐Energy‐Density Li Batteries – A Review. ChemElectroChem, 11(14), e202300702. https://doi.org/10.1002/celc.202300702

[7] Li, R., Zeng, Y., Song, L., Lv, J., Wang, C., Zhou, C., . . . Yue, H. (2024). Mechanism and Solution of Overcharge Effect in Lithium–Sulfur Batteries. Small, 20(2), 2305283. https://doi.org/10.1002/smll.202305283

[8] Liu, J., He, S., Liu, S., Wang, S., & Zhang, J. (2022). Advanced electrolyte systems with addi-tives for high-cell-voltage and high-energy-density lithium batteries. Journal of Materials Chemistry A, 10(43), 22929-22954. https://doi.org/10.1039/D2TA07696A

[9] Liu, Y., Zhao, C., Du, J., Zhang, X., Chen, A. B., & Zhang, Q. (2023). Research Progresses of Liquid Electrolytes in Lithium‐Ion Batteries. Small, 19(8), 2205315. https://doi.org/10.1002/smll.202205315

[10] Lu, D., Li, R., Rahman, M. M., Yu, P., Lv, L., Yang, S., . . . Fan, X. (2024). Lig-and-channel-enabled ultrafast Li-ion conduction. Nature, 627(8002), 101-107. https://doi.org/10.1038/s41586-024-07045-4

[11] Lv, W., Zhu, C., Chen, J., Ou, C., Zhang, Q., & Zhong, S. (2021). High performance of low-temperature electrolyte for lithium-ion batteries using mixed additives. Chemical En-gineering Journal, 418. https://doi.org/10.1016/j.cej.2021.129400

[12] Peng, X., Shen, H., Su, K., Wang, W., Weng, S., Tang, C., . . . Xiang, Y. (2024). Stable and Fast Ion Transport Electrolyte Interfaces Modified with Novel Fluorine- and Nitro-gen-Containing Solvents for Ni-Rich Cathode Materials. ACS Applied Materials & Interfaces, 16(26), 34281-34293. https://doi.org/10.1021/acsami.4c02804

[13] Pham, L. H., Nguyen, N. T., Nguyen, D. M., Nguyen, T. A., Nguyen, T. B., Suhr, J., . . . Hoang, D. (2024). Effective non-halogen flame-retardants combined with nSiO2 particles to improve thermal stability and fire resistance of high-performance polyurethane nanocomposite foams. Journal of Materials Science & Technology, 203, 1-13. https://doi.org/10.1016/j.jmst.2024.02.066

[14] Qin, Z., Gao, Y., Wang, F., Fang, W., Zhang, T., Zhong, Y., . . . Chen, G. (2024). Dual-additive chemistry induced robust electrode-electrolyte interphases for high-performance lithium metal batteries. Journal of Power Sources, 614, 235035. https://doi.org/10.1016/j.jpowsour.2024.235035

[15] Tian, Y., Chen, S., Ding, S., Chen, Q., & Zhang, J. (2023). A highly conductive gel electrolyte with favorable ion transfer channels for long-lived zinc–iodine batteries. Chemical Science, 14(2), 331-337. https://doi.org/10.1039/D2SC06035C

[16] Wang, T., Liu, X., Li, H., Liu, Y., Liu, X., He, D., . . . Wang, C. (2025). Non-consumable gam-ma-cyclodextrin additive constructing anti-solvation interphase realizing dendrites free and high-performance lithium metal batteries. Journal of Colloid and Interface Science, 679, 254-262. https://doi.org/10.1016/j.jcis.2024.10.099

[17] Wang, Y., Ren, L., Zhang, Q., Pato, A. H., Liu, J., Lu, X., & Liu, W. (2024). Fluorine-Rich Elec-trolyte Additive for Achieving Dendrite-Free Lithium Anodes at Low Temperatures. ACS Applied Materials & Interfaces, 16(36), 47674-47682. https://doi.org/10.1021/acsami.4c10028

[18] Wang, Y., Xie, L., Sun, H., Wang, X., Zhou, H., Tang, Y., . . . Huang, A.-C. (2024). 4,5-Difluoro-1,3-dioxolan-2-one as a film-forming additive improves the cycling and thermal stability of SiO/C anode Li-ion batteries. Process Safety and Environmental Pro-tection, 183, 496-504. https://doi.org/10.1016/j.psep.2024.01.043

[19] Wu, B., Chen, C., Danilov, D. L., Chen, Z., Jiang, M., Eichel, R. A., & Notten, P. H. L. (2023). Dual Additives for Stabilizing Li Deposition and SEI Formation in Anode‐Free Li‐Metal Bat-teries. ENERGY & ENVIRONMENTAL MATERIALS, 7(3). https://doi.org/10.1002/eem2.12642

[20] Yang, S., Mei, L., Wu, Z., Zhu, J., Li, P., Hong, H., . . . Zhi, C. (2024). Overcharge protection in aqueous zinc-ion batteries via self-sacrificial additives. Energy & Environmental Science, 17(19), 7424-7434. https://doi.org/10.1039/D4EE01759E

[21] Yu, J., Hu, Y., Ma, X., Zou, X., Qi, H., Zhou, Y., & Yan, F. (2022). A highly conductive and stable hybrid solid electrolyte for high voltage lithium metal batteries. Journal of Materials Chemistry A, 10(24), 12842-12855. https://doi.org/10.1039/D2TA02315F

[22] Zeng, X. X., Xu, Y. T., Yin, Y. X., Wu, X. W., Yue, J., & Guo, Y. G. (2019). Recent advances in nanostructured electrode-electrolyte design for safe and next-generation electrochemical energy storage. Materials Today Nano, 8, 100057. https://doi.org/10.1016/j.mtnano.2019.100057

[23] Zhang, L., Dong, X., Lin, H., Zhang, X., Wang, Y., Wang, C., . . . Huang, G. (2024). Research on the synergistic effect of fluoroethylene carbonate and lithium difluoro(oxalato)borate in electrolyte on LiNi0.5Mn1.5O4-based high-voltage lithium-ion batteries. Journal of Mate-rials Science: Materials in Electronics, 35(7). https://doi.org/10.1007/s10854-024-12276-2

[24] Zhao, Q., Stalin, S., Zhao, C., & Archer, L. A. (2020). Designing solid-state electrolytes for safe, energy-dense batteries. Nature Reviews Materials, 5(3), 229-252. https://doi.org/10.1038/s41578-019-0165-5

Downloads

Published

2025-03-25

Issue

Section

Articles

How to Cite

Overview of Electrolyte Additives for Lithium-Ion Batteries. (2025). 材料学辑要, 1(1), 6–15. https://doi.org/10.63313/MS.4002