A preliminary study on the application of machine learning model in shale gas frac-turing
DOI:
https://doi.org/10.63313/CS.8010Keywords:
Artificial Intelligence, Machine Learning, Shale Gas FracturingAbstract
With the rapid development of artificial intelligence technology, machine learning models have shown great potential in many fields. This paper focuses on the application of machine learning model in shale gas fracturing, starting from the complexity of shale gas fracturing and the limitations of traditional methods, expounds the application scenarios, advantages and challenges of machine learning model in this field, demonstrates its practical application effect through case analysis, and finally discusses the future development direction, aiming to provide reference for the optimization and innovation of shale gas fracturing technology.
References
[1] 邓涵文.数据驱动的页岩气压裂产能潜力评价及参数优化研究[D]. 中国石油大学(北京), 2022. DOI:10.27643/d.cnki.gsybu.2022.002070.
[2] 曾凡辉,胡大淦,张宇,等. 数据驱动的页岩油水平井压裂施工参数智能优化研究 [J]. 石油钻探技术, 2023, 51 (05): 78-87.
[3] 杨永华,宋燕高,王兴文,等. 威荣页岩气田压裂实践与认识 [J]. 石油实验地质, 2023, 45 (06): 1143-1150.
[4] 李亚龙,刘先贵,胡志明,等. 基于三重介质等效缝网的页岩气产能预测新模型 [J]. 煤炭学报, 2020, 45 (S1): 377-383. DOI:10.13225/j.cnki.jccs.2019.1009.
[5] 杨文,刘飞,刘烽,等.2023. 基于深度学习和无线传输的非常规页岩气压裂微地震实时自动监测. 地球物理学进展,38 (4);1656-1672
Downloads
Published
Issue
Section
License
Copyright (c) 2025 by author(s) and Erytis Publishing Limited.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.