A preliminary study on the application of machine learning model in shale gas frac-turing

Authors

  • Wenrui Teng School of Artificial Intelligence, Wenzhou Polytechnic, Wenzhou 325035, China Author
  • Zhenting Wu School of Artificial Intelligence, Wenzhou Polytechnic, Wenzhou 325035, China Author
  • Liangjun Li School of Artificial Intelligence, Wenzhou Polytechnic, Wenzhou 325035, China Author
  • Zelin Peng School of Artificial Intelligence, Wenzhou Polytechnic, Wenzhou 325035, China Author
  • Yongjun Wang School of Artificial Intelligence, Wenzhou Polytechnic, Wenzhou 325035, China Author

DOI:

https://doi.org/10.63313/CS.8010

Keywords:

Artificial Intelligence, Machine Learning, Shale Gas Fracturing

Abstract

With the rapid development of artificial intelligence technology, machine learning models have shown great potential in many fields. This paper focuses on the application of machine learning model in shale gas fracturing, starting from the complexity of shale gas fracturing and the limitations of traditional methods, expounds the application scenarios, advantages and challenges of machine learning model in this field, demonstrates its practical application effect through case analysis, and finally discusses the future development direction, aiming to provide reference for the optimization and innovation of shale gas fracturing technology.

References

[1] 邓涵文.数据驱动的页岩气压裂产能潜力评价及参数优化研究[D]. 中国石油大学(北京), 2022. DOI:10.27643/d.cnki.gsybu.2022.002070.

[2] 曾凡辉,胡大淦,张宇,等. 数据驱动的页岩油水平井压裂施工参数智能优化研究 [J]. 石油钻探技术, 2023, 51 (05): 78-87.

[3] 杨永华,宋燕高,王兴文,等. 威荣页岩气田压裂实践与认识 [J]. 石油实验地质, 2023, 45 (06): 1143-1150.

[4] 李亚龙,刘先贵,胡志明,等. 基于三重介质等效缝网的页岩气产能预测新模型 [J]. 煤炭学报, 2020, 45 (S1): 377-383. DOI:10.13225/j.cnki.jccs.2019.1009.

[5] 杨文,刘飞,刘烽,等.2023. 基于深度学习和无线传输的非常规页岩气压裂微地震实时自动监测. 地球物理学进展,38 (4);1656-1672

Downloads

Published

2025-05-08

How to Cite

A preliminary study on the application of machine learning model in shale gas frac-turing. (2025). 计算机科学辑要, 1(1), 119-124. https://doi.org/10.63313/CS.8010