Intelligent Production Decision-Making System for Injection Molding Factories
DOI:
https://doi.org/10.63313/CS.8012Keywords:
Intelligent Manufacturing, Injection Molding Production Optimization, Digital Twin Simulation, Dynamic Scheduling Algorithm, Industrial Large ModelAbstract
This paper addresses the intelligent transformation needs of the traditional injection molding industry by proposing a comprehensive intelligent production decision-making system integrating smart scheduling, auxiliary decision-making, and digital twin simulation. By combining the Weighted Shortest Processing Time (WSPT) algorithm, dynamic programming, and equipment health assessment, the system achieves dynamic multi-machine scheduling and resource optimization. An injection molding industry-specific large model is constructed, leveraging real-time data analysis and a knowledge base to optimize process parameters and enable anomaly early warning. A digital twin platform is developed using Unity and OPC UA protocols, employing multi-physics simulation and Markov decision processes to predict production issues. The research provides a practical technical solution for the intelligent upgrading of injection molding factories, offering both theoretical innovation and engineering application value.
References
[1] 陈孜禹,吕浩杰,余小庆,等.基于SDN负载均衡的Fanuc数控机床物联系统[J/OL].机床与液压,1-8[2025-05-08].http://kns.cnki.net/kcms/detail/44.1259.TH.20241216.1312.009.html.
[2] 孙俊杰. 《工业大模型多领域展示人工智能应用潜力——卡奥斯工业大模型跨领域前沿探索》. 中国工业和信息化, 期 4 (2024年): 34–38. https://doi.org/10.19609/j.cnki.cn10-1299/f.2024.04.006.
[3] 张洪琳. 《动态规划算法求解单机调度问题研究》. 硕士学位论文, 昆明理工大学, 2021. https://doi.org/10.27200/d.cnki.gkmlu.2019.002126.
[4] GB/T 25156 - 2020《橡胶塑料注射成型机通用技术要求及检测方法》
[5] 邓超, 孙耀宗, 李嵘, 王远航和熊尧.《基于隐Markov模型的重型数控机床健康状态评估》. 计算机集成制造系统 19, 期 3 (2013年): 552–58. https://doi.org/10.13196/j.cims.2013.03.106.dengch.006.
[6] 翟锡豹.《工业大模型发展趋势及策略建议》.中国工业和信息化, 期 4 (2024年): 16–19. https://doi.org/10.19609/j.cnki.cn10-1299/f.2024.04.001.
[7] 刘欣, 范希营, 郭永环和李春晓. 《注塑工艺参数优化研究现状及发展趋势》. 塑料科技 49, 期 2 (2021年): 106–10. https://doi.org/10.15925/j.cnki.issn1005-3360.2021.02.027.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 by author(s) and Erytis Publishing Limited.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.