Intelligent Production Decision-Making System for Injection Molding Factories

Authors

  • Duang Chen School of Artificial Intelligence, Wenzhou Polytechnic, Wenzhou 325035, China Author
  • Feng Xu School of Artificial Intelligence, Wenzhou Polytechnic, Wenzhou 325035, China Author
  • Youwei Zu School of Artificial Intelligence, Wenzhou Polytechnic, Wenzhou 325035, China Author
  • Haoyi Zhao School of Artificial Intelligence, Wenzhou Polytechnic, Wenzhou 325035, China Author
  • Shiwei Xu School of Artificial Intelligence, Wenzhou Polytechnic, Wenzhou 325035, China Author

DOI:

https://doi.org/10.63313/CS.8012

Keywords:

Intelligent Manufacturing, Injection Molding Production Optimization, Digital Twin Simulation, Dynamic Scheduling Algorithm, Industrial Large Model

Abstract

This paper addresses the intelligent transformation needs of the traditional injection molding industry by proposing a comprehensive intelligent production decision-making system integrating smart scheduling, auxiliary decision-making, and digital twin simulation. By combining the Weighted Shortest Processing Time (WSPT) algorithm, dynamic programming, and equipment health assessment, the system achieves dynamic multi-machine scheduling and resource optimization. An injection molding industry-specific large model is constructed, leveraging real-time data analysis and a knowledge base to optimize process parameters and enable anomaly early warning. A digital twin platform is developed using Unity and OPC UA protocols, employing multi-physics simulation and Markov decision processes to predict production issues. The research provides a practical technical solution for the intelligent upgrading of injection molding factories, offering both theoretical innovation and engineering application value.

References

[1] 陈孜禹,吕浩杰,余小庆,等.基于SDN负载均衡的Fanuc数控机床物联系统[J/OL].机床与液压,1-8[2025-05-08].http://kns.cnki.net/kcms/detail/44.1259.TH.20241216.1312.009.html.

[2] 孙俊杰. 《工业大模型多领域展示人工智能应用潜力——卡奥斯工业大模型跨领域前沿探索》. 中国工业和信息化, 期 4 (2024年): 34–38. https://doi.org/10.19609/j.cnki.cn10-1299/f.2024.04.006.

[3] 张洪琳. 《动态规划算法求解单机调度问题研究》. 硕士学位论文, 昆明理工大学, 2021. https://doi.org/10.27200/d.cnki.gkmlu.2019.002126.

[4] GB/T 25156 - 2020《橡胶塑料注射成型机通用技术要求及检测方法》

[5] 邓超, 孙耀宗, 李嵘, 王远航和熊尧.《基于隐Markov模型的重型数控机床健康状态评估》. 计算机集成制造系统 19, 期 3 (2013年): 552–58. https://doi.org/10.13196/j.cims.2013.03.106.dengch.006.

[6] 翟锡豹.《工业大模型发展趋势及策略建议》.中国工业和信息化, 期 4 (2024年): 16–19. https://doi.org/10.19609/j.cnki.cn10-1299/f.2024.04.001.

[7] 刘欣, 范希营, 郭永环和李春晓. 《注塑工艺参数优化研究现状及发展趋势》. 塑料科技 49, 期 2 (2021年): 106–10. https://doi.org/10.15925/j.cnki.issn1005-3360.2021.02.027.

Downloads

Published

2025-05-08

How to Cite

Intelligent Production Decision-Making System for Injection Molding Factories. (2025). 计算机科学辑要, 1(1), 125-134. https://doi.org/10.63313/CS.8012