A Keyframe Optimization Method Based on Information Entropy

Authors

  • Xi Zhang Institute of Electronic and Electrical Engineering, Civil Aviation Flight University of China, Guanghan, Sichuan. Author
  • Nianqing Tan Institute of Electronic and Electrical Engineering, Civil Aviation Flight University of China, Guanghan, Sichuan. Author

DOI:

https://doi.org/10.63313/CS.8004

Keywords:

UAV indoor localization, Vision-inertial fusion, Visual-Inertial Odometry, Information entropy

Abstract

In response to the issue that the VINS-Fusion algorithm primarily relies on heuristic strategies based on parallax magnitude and feature tracking quality during keyframe selection, making it difficult to effectively measure global map uncertainty and potentially leading to insufficient lo-calization accuracy, this paper proposes a keyframe selection optimization method based on in-formation entropy theory. First, by using a quadrotor UAV as the hardware platform, the key processes of front-end feature tracking and back-end sliding-window optimization in VINS-Fusion are systematically analyzed. Then, during the keyframe insertion stage, an infor-mation entropy metric is introduced to accurately characterize the uncertainties of map points and pose estimates. By setting an entropy threshold, the timing of keyframe insertion is adap-tively optimized, effectively reducing the global cumulative error. Finally, the proposed method is validated on the open-source EuRoC dataset and comprehensively compared with the original VINS-Fusion algorithm. Experimental results demonstrate that incorporating information en-tropy into the keyframe selection strategy significantly reduces redundant keyframes, decreases map-point uncertainty to some extent, enhances global trajectory estimation accuracy, and has only a minimal impact on the real-time performance of the algorithm.

References

[1] 苏东彦. 基于视觉惯性里程计的无人机室内导航系统研究[D]. 南京:南京信息工程大学, 2023.

[2] 王子卉. 无人机视觉/惯性紧耦合导航系统关键技术研究[D]. 南京:东南大学, 2024.

[3] 王立强. 轮式机器人运动增强的视觉/惯性/GNSS融合导航算法研究[D]. 武汉:武汉大学, 2025.

[4] Qin T, Cao S, Pan J, et al. A General Optimization-based Framework for Global Pose Estima-tion with Multiple Sensors[A]. arXiv, 2019.

[5] Qin T, Pan J, Cao S, et al. A General Optimization-based Framework for Local Odometry Es-timation with Multiple Sensors[A]. arXiv, 2019.

[6] 李丹, 李俊祥, 赵文杰, 等. 基于改进的点线融合和关键帧选择的视觉SLAM方法[J]. 机器人, 2025 , 34(2): 123-129.

[7] 杨宇瞳, 王海珍. 基于信息熵和注意力机制的Bi-LSTM物联网入侵检测方法[J]. 齐齐哈尔大学学报(自然科学版), 2025(2): 28-33, 69.

[8] 席含. 基于RGB信息熵的VSLAM的算法研究[D]. 南昌:南昌大学, 2024.

[9] Strasdat H, Montiel J M M, Davison A J. Visual SLAM: Why filter?[J]. Image and Vision Computing, 2012, 30(2): 65-77.

[10] Das A, Waslander S L. Entropy based keyframe selection for Multi-Camera Visual SLAM[C]//2015 IEEE/RSJ In-ternational Conference on Intelligent Robots and Systems (IROS). 2015: 3676-3681.

[11] 王风华, 徐志城, 赵冷锐. 基于紧耦合IMU的辐射场视觉惯性SLAM算法[J]. 电子测量技术, 2025, 44(5): 112-118.

[12] 周益鹏. 基于双目视觉的视觉惯性里程计算法改进研究[D]. 苏州:苏州大学, 2024.

[13] 尚硕, 曹建荣, 汪明, 等. 机器视觉中角点检测算法研究[J]. 计算机测量与控制, 2024(1): 217-225.

[14] 刘高. 基于点线特征的视觉惯性里程计研究[D]. 昆明:昆明理工大学, 2022.

[15] 黄良沛, 胡志豪, 杨天龙, 等. 基于优化回环检测的激光雷达SLAM算法[J]. 信息技术, 2024(12): 26-31, 38.

[16] 谷学静, 刘秋月, 马冠征, 等. 基于双边滤波和词袋模型的图像匹配算法[J]. 激光杂志, 2022(7): 70-74.

[17] Shannon C E. A mathematical theory of communication[J]. The Bell System Technical Jour-nal, 1948, 27(3): 379-423.

Downloads

Published

2025-04-11

How to Cite

A Keyframe Optimization Method Based on Information Entropy. (2025). 计算机科学辑要, 1(1), 44-53. https://doi.org/10.63313/CS.8004