Research progress of fibrous layered veins
DOI:
https://doi.org/10.63313/CESS.4002Keywords:
Fibrillar Veins, Reverse-Axis Tensile Vein, Cone-In-Cone Structure, Genesis MechanismAbstract
Fibrous layered veins often appear in shale and carbonate formations. The formation mechanism and the formation of cone-shaped structures in them are of great significance to the diagenetic sedimentary environment of surrounding rocks and the geological history of surrounding rocks. In the past, scholars generally used the fracture closure mechanism to explain the formation process of fibrous veins. However, with the discovery of anti-axial tensile veins, the fracture mechanism cannot fully explain its causes. Therefore, it is necessary to further explore the formation mechanism of fibrous veins. Based on previous studies, this paper collected and analyzed the literature related to fibrous veins, and comprehensively described and analyzed the research status, crystal structure classification, material migration mechanism and different genetic interpretation types. It provides a comprehensive understanding of the formation mechanism of different types of fibrous veins. It also provides an important reference value for understanding the origin and evolution process of fibrous veins and cone-in-cone structures in the formation. At the same time, this paper summarizes and analyzes that the crystal morphology of many fibrous veins cannot be explained by the classical crystal growth theory. Some recent studies have also shown that veins can be formed without rupture. Under the mechanism of diffusion and mass transfer, crystal growth forces the separation of surrounding rock and may form unruptured veins.
References
[1] Cao M C,Zhong J H,Liu C,et al.,2017. Features and genetic mechanism of cone incone struc-tures: Progress and examples,China[J]. Journal of palaeogeography. 19(06): 1049-1062. (in Chinese)
[2] Cheng J H; Zhao B S; Wang N , et al. 2015 Laser Raman and Electron Probe Composition Characteristics of Fibrous Mineral Veins in Daba Mountain -- Cheng Jinghua [Z]//Journal of Mineralogy: Volume 35 Journal of Mineralogy: 568-569. (in Chinese)
[3] Huang W l ; Feng M Y; Liu X H, et al. 2020 Genesis of Fibrous Veins in the Longmaxi For-mation Shale in the Shizhu Area of East Chongqing by Huang Weilin [Z]//Geological Sci-ence and Technology Bulletin: Volume 39 Geological Science and Technology Bulletin: 160-169. (in Chinese)
[4] Wang M, 2016 The genetic mechanism and indicative significance of calcite veins in deep source rocks of Dongying Depression, Wang Miao [D/OL]//China University of Petroleum (East China) China University of Petroleum (East China): 70. (in Chinese)
[5] Zheng M, Luo M, Pan B B et al. Research progress on dissolved oxygen consumption in ma-rine sediments [J]. Progress in Earth Science, 2023,38 (03): 236-255. (in Chinese)
[6] Wang A Q. Analysis and Research Significance of Carbonate Microfacies [J]. Petrochemical Technology, 2023,30 (06): 161-163. (in Chinese)
[7] Zhang Y P; Luo M; Hu Y, et al. 2017 Research progress on numerical models of early dia-genesis and anaerobic oxidation of methane in seabed organic matter by Zhang Yanping [Z]//Marine Geology and Quaternary Geology: Volume 37 Marine Geology and Quaternary Geology: 109-121. (in Chinese)
[8] Zhao B S. Characteristics and genetic mechanism of fibrous mineral veins in shale [D]. Chang'an University, 2022. (in Chinese)
[9] Zhao L Q; Li Z P; Zou K Z, et al. (2022) Crystal analysis of fibrous calcite veins based on electron backscatter diffraction technique by Zhao Lanquan [J] Petroleum Experimental Geology, 44 (02): 357-364. (in Chinese)
[10] Bergmann K D, Grotzinger J P, Fischer W W, 2013. Biological Influences On Seafloor Car-bonate Precipitation [J/OL]. Palaios, 28(2): 99-115. DOI:10.2110/palo.2012.p12-088r.
[11] Bons P D, Elburg M A, Gomez-rivas E, 2012. A review of the formation of tectonic veins and their microstructures[J/OL]. Journal of Structural Geology, 43: 33-62. DOI:10.1016/j.jsg.2012.07.005.
[12] Bons, P.D., Montenari, M., 2005. The formation of antitaxial calcite veins with well devel-oped fibres, Oppaminda Creek, South Australia. Journal of Structural Geology 27, 231e248.[J].
[13] Cobbold P R, Zanella A, Rodrigues N, et al, 2013. Bedding-parallel fibrous veins (beef and cone-in-cone): Worldwide occurrence and possible significance in terms of fluid over-pressure, hydrocarbon generation and mineralization[J/OL]. Marine and Petroleum Geol-ogy, 43: 1-20. DOI:10.1016/j.marpetgeo.2013.01.010.
[14] Denaeyer M E, 1943. Les cone-in-cone de la France métropolitaine et d’outre-mer[J/OL]. Bulletin de la Société française de Minéralogie, 66(1): 173-221. DOI:10.3406/bulmi.1943.4532.
[15] Durney D.W., Ramsay J.G. Incremental strains measured by syntectonic crystal growths. In: De Jong, K.A., Scholten, K. (Eds.)[J]. Gravity and Tectonics. Wiley, New York, 1973: 67-96[J].
[16] Fisher D, Byrne T, 1990. The character and distribution of mineralized fractures in the Ko-diak Formation, Alaska: Implications for fluid flow in an underthrust sequence[J/OL]. Journal of Geophysical Research: Solid Earth, 95(B6): 9069-9080. DOI:10.1029/JB095iB06p09069.
[17] Gale J F W, Laubach S E, Olson J E, et al, 2014. Natural Fractures in shale: A review and new observations[J/OL]. AAPG Bulletin, 98(11): 2165-2216. DOI:10.1306/08121413151.
[18] Greene S E, Bottjer D J, Corsetti A, et al, 2012. A subseafloor carbonate factory across the Triassic-Jurassic transition[J/OL]. Geology, 40(11): 1043-1046. DOI:10.1130/G33205.1.
[19] Grice K, Cao C, Love G D, et al, 2005. Photic Zone Euxinia During the Permian-Triassic Su-peranoxic Event[J]. 307.
[20] Hautmann M, 2004. Effect of end-Triassic CO2 maximum on carbonate sedimentation and marine mass extinction[J/OL]. Facies, 50(2)[2023-11-24]. http://link.springer.com/10.1007/s10347-004-0020-y. DOI:10.1007/s10347-004-0020-y.
[21] Heindel K, Richoz S, Birgel D, et al, 2015. Biogeochemical formation of calyx-shaped car-bonate crystal fans in the subsurface of the Early Triassic seafloor[J/OL]. Gondwana Re-search, 27(2): 840-861. DOI:10.1016/j.gr.2013.11.004.
[22] Hesse R, Fong C, Schumann D, 2019. Origin of spherulitic and cone-in-cone concretions in Cambro-Ordovician black shales, St Lawrence Estuary, Quebec, Canada[J/OL]. Geological Magazine, 156(10): 1793-1804. DOI:10.1017/S0016756819000128.
[23] Kershaw S, Guo L, 2016. Beef and cone-in-cone calcite fibrous cements associated with the end-Permian and end-Triassic mass extinctions: Reassessment of processes of for-mation[J/OL]. Journal of Palaeogeography, 5(1): 28-42. DOI:10.1016/j.jop.2015.11.003.
[24] Kiessling W, Roniewicz E, Villier L, et al, 2009. An early Hettangian coral reef in southern France: Implications for the end-Triassic reef crisis[J/OL]. PALAIOS, 24(10): 657-671. DOI:10.2110/palo.2009.p09-030r.
[25] Kowal-linka M, 2010. Origin of cone-in-cone calcite veins during calcitization of dolomites and their subsequent diagenesis: A case study from the Gogolin Formation (Middle Trias-sic), SW Poland[J/OL]. Sedimentary Geology, 224(1-4): 54-64. DOI:10.1016/j.sedgeo.2009.12.009.
[26] Le Breton E, Cobbold P R, Zanella A, 2013. Cenozoic reactivation of the Great Glen Fault, Scotland: additional evidence and possible causes[J/OL]. Journal of the Geological Society, 170(3): 403-415. DOI:10.1144/jgs2012-067.
[27] Marshall, J.D, 1982. Marshall, J.D., 1982. Isotopic composition of displacive fibrous calcite veins: reversals in pore-water composition trends during burial diagenesis. Journal of Sedimentary Petrology 52 (2), 615-630.[J]. Journal of Sedimentary Petrology, 52(2): 615-630.
[28] Matveev, K.K., Distribution of Disturbed Crystallization Structures (Cone-in-Cone) in Kungurian Sediments on the Western Slope of the Urals (Based on Data of 1944), Trudy Gorno-Geol. Inst., 1948, issue 14, no. 1, pp. 28–32.[J].
[29] Matveev, K.K, 1948. Distribution of Disturbed Crystallization Structures (Cone-in-Cone) in Kungurian Sediments on the Western Slope of the Urals (Based on Data of 1944)[J]. Trudy Gorno-Geol, 14(1): 28-32.
[30] Meng Q, Hooker J, Cartwright J, 2017. Early overpressuring in organic-rich shales during burial: evidence from fibrous calcite veins in the Lower Jurassic Shales-with-Beef Member in the Wessex Basin, UK[J/OL]. Journal of the Geological Society, 174(5): 869-882. DOI:10.1144/jgs2016-146.
[31] Okamoto A, 2011. Textures of syntaxial quartz veins synthesized by hydrothermal exper-iments[J]. Journal of Structural Geology, 33: 1764-1775.
[32] Oliver N H S, Bons P D, 2001. Mechanisms of fluid flow and fluid–rock interaction in fossil metamorphic hydrothermal systems inferred from vein–wallrock patterns, geometry and microstructure[J]. Geofluids, 1(1): 137-162.
[33] Passchier C.W, Trouw R.A.J. Microtectonics[M]. Berlin: Springer Verlag, 2005[J].
[34] Passchier C.W, Trouw R.A.J. Microtectonics[M]. Berlin: Springer Verlag, 1996[J].
[35] Pruss S B, Corsetti F A, Fischer W W, 2008. Seafloor-precipitated carbonate fans in the Ne-oproterozoic Rainstorm Member, Johnnie Formation, Death Valley Region, USA[J/OL]. Sedimentary Geology, 207(1-4): 34-40. DOI:10.1016/j.sedgeo.2008.03.005.
[36] Schoene B, Gux J, Bartolini A, et al, 2010. Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level[J/OL]. Geology, 38(5): 387-390. DOI:10.1130/G30683.1.
[37] Worden R H, Smalley P C, Cross M M, 2000. The Influence of Rock Fabric and Mineralogy on Thermochemical Sulfate Reduction: Khuff Formation, Abu Dhabi[J/OL]. Journal of Sedimentary Research, 70(5): 1210-1221. DOI:10.1306/110499701210.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 by author(s) and Erytis Publishing Limited.

This work is licensed under a Creative Commons Attribution 4.0 International License.